An empirical study of semantic similarity in WordNet and Word2Vec
نویسنده
چکیده
This thesis performs an empirical analysis of Word2Vec by comparing its output to WordNet, a well-known, human-curated lexical database. It finds that Word2Vec tends to uncover more of certain types of semantic relations than others – with Word2Vec returning more hypernyms, synonomyns and hyponyms than hyponyms or holonyms. It also shows the probability that neighbors separated by a given cosine distance in Word2Vec are semantically related in WordNet. This result both adds to our understanding of the stillunknown Word2Vec and helps to benchmark new semantic tools built from word vectors. Word2Vec, Natural Language Processing, WordNet, Distributional Semantics
منابع مشابه
An empirical study of semantic similarity in WordNet
This thesis performs an empirical analysis of Word2Vec by comparing its output to WordNet, a well-known, human-curated lexical database. It finds that Word2Vec tends to uncover more of certain types of semantic relations than others – with Word2Vec returning more hypernyms, synonomyns and hyponyms than hyponyms or holonyms. It also shows the probability that neighbors separated by a given cosin...
متن کاملAutomatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملHHU at SemEval-2016 Task 1: Multiple Approaches to Measuring Semantic Textual Similarity
This paper describes our participation in the SemEval-2016 Task 1: Semantic Textual Similarity (STS). We developed three methods for the English subtask (STS Core). The first method is unsupervised and uses WordNet and word2vec to measure a token-based overlap. In our second approach, we train a neural network on two features. The third method uses word2vec and LDA with regression splines.
متن کاملCombining Word Embedding and Lexical Database for Semantic Relatedness Measurement
While many traditional studies on semantic relatedness utilize the lexical databases, such as WordNet or Wikitionary, the recent word embedding learning approaches demonstrate their abilities to capture syntactic and semantic information, and outperform the lexicon-based methods. However, word senses are not disambiguated in the training phase of both Word2Vec and GloVe, two famous word embeddi...
متن کاملComputing Semantic Text Similarity Using Rich Features
Semantic text similarity (STS) is an essential problem in many Natural Language Processing tasks, which has drawn a considerable amount of attention by research community in recent years. In this paper, our work focused on computing semantic similarity between texts of sentence length. We employed a Support Vector Regression model with rich effective features to predict the similarity scores be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017